Sampling node group structure of social and information networks

نویسندگان

  • Neli Blagus
  • Gregor Weiss
  • Lovro Subelj
چکیده

Lately, network sampling proved as a promising tool for simplifying large real-world networks and thus providing for their faster and more efficient analysis. Still, understanding the changes of network structure and properties under different sampling methods remains incomplete. In this paper, we analyze the presence of characteristic group of nodes (i.e., communities, modules and mixtures of the two) in social and information networks. Moreover, we observe the changes of node group structure under two sampling methods, random node selection based on degree and breadth-first sampling. We show that the sampled information networks contain larger number of mixtures than original networks, while the structure of sampled social networks exhibits stronger characterization by communities. The results also reveal there exist no significant differences in the behavior of both sampling methods. Accordingly, the selection of sampling method impact on the changes of node group structure to a much smaller extent that the type and the structure of analyzed network. Keywords—complex networks; social networks; information networks; network sampling; node group structure; communities; modules

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks

Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...

متن کامل

Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks

Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...

متن کامل

Rate of Use of Health Information of Mass Media and Virtual Social Networks among Citizens of Tehran: A Population Study

Aims: Many information sources, including mass media, are trying to play an important role in health-promoting of people in society through increasing their health information. The aim of the present study was to investigate the rate of use of health information, presented in mass media and virtual social networks among citizens of Tehran. Instruments & Methods: This cross-sectional descriptiv...

متن کامل

The Influence of Location on Nodes’ Centrality in Location-Based Social Networks

Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1405.3093  شماره 

صفحات  -

تاریخ انتشار 2014